

DYNAMIC FEM ANALYSIS OF MULTIPLE CMUT CELLS IN IMMERSION

Baris Bayram, Goksen G. Yaralioglu, Arif Sanli Ergun, Ömer Oralkan, and Butrus T. Khuri-Yakub

Ginzton Laboratory, Stanford University, CA

2004 IEEE Ultrasonics Symposium, Montréal, Canada

[‡]This work is funded by ONR-NIH

Outline

- Motivation
- FEM model of an infinite CMUT
- Dynamic FEM analysis
- FEM and experimental results
- Conclusion

Motivation

- Goal: To accurately model the cMUT dynamics in "linear" and nonlinear operation regimes using time-domain, finite element method (FEM)
- Test: Operate in different regimes:
 - Conventional (no contact)
 - Collapsed (always in contact)
 - Collapse-snapback (intermittent contact)

Different Operation Regimes

Conventional, Collapsed and Collapse-Snapback Operations

FEM model of an infinite CMUT

FEM model of an infinite CMUT

FEM model of an infinite CMUT

Dynamic FEM Analysis

- Commercially available software (*LS-DYNA 970*)
 - Explicit, time-domain solver
- LS-DYNA built-in features
 - Fluid-structure coupling
 - Contact capability
- LS-DYNA user-defined features
 - Electrostatic-structural coupling
 - Berenger's Perfectly Matched Layer (PML) absorbing boundary
- Large Signal Characterization
 - Biasing + Pulse excitation
 - Acoustic Output Pressure

LS-DYNA User-defined Features

Electrostatic-structural coupling

Operation Regime	Bias voltage	Average Deflection (Å) using		Percentage
	(Volt)	ANSYS	LS-DYNA	Difference
Conventional	83	-148	-145	2.1 %
Collapsed	83	-649	-632	2.6 %
Collapsed	101	-755	-752	0.4 %

LS-DYNA User-defined Features

Berenger's Perfectly Matched Layer (PML)
Attenuation profile:

Static FEM Results

CMUT Dimensions

Side length (L) (µm)	30
Membrane thickness (T) (µm)	1.2
Gap thickness (G) (µm)	0.18
Insulating layer thickness (I) (µm)	0.10
Cell periodicity (C) (µm)	35
Substrate (S) (µm)	500

Vacuum backing causes reflections from the bottom of the substrate.

Conventional vs. Collapse-snapback

CMUT Parameters

Length of the transducer, μm	1180
Width of the transducer, μm	280
Number of cells per element	4 x 52
Cell Shape Factor	Hexagon
Cell radius $(r_{cell}), \mu m$	16
Electrode radius $(r_{el}), \mu m$	8
Electrode thickness $(t_{el}), \mu m$	0.3
Membrane thickness $(t_m), \mu m$	1.06
Gap thickness $(t_g), \mu m$	0.22
Insulating layer thickness (t_i) , μm	0.3
Silicon substrate thickness, μm	500
Collapse voltage, V	130
Snapback voltage, V	110

Experimental Results

90 V step voltage on 500 um substrate: Pressure isometric animation

More Results

 U3-D-4 High-Frequency CMUT Arrays for High-Resolution Medical Imaging: Preliminary Results.

 U3-D-5 CMUT Ring Arrays for Forward-looking Intravascular Imaging: Preliminary Results.

Conclusion

- The cMUT dynamics modeled with time-domain, nonlinear, finite element method (FEM) using LS-DYNA explicit solver.
- Tested in linear (conventional) and nonlinear (collapsed and collapse-snapback) operation regimes.
- Good agreement between experimental and FEM results observed.
- High acoustic output pressure produced in nonlinear regimes.